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Short Papers

Data Reduction Method for Q Measurements of
Strip-Line Resonators

S. Toncich and R. E. Collin

Abstract—This paper describes a technique that enables the atten-
uation constant a of a micrustrip line to be found from the measured
return loss curve as a function of frequency for a half wavelength
resonator. Data averaging is incorporated and the effects of dispersion
are included. This method does not require the use of an equivalent
resonator model for the stripline, nor does it rely on graphical tech-
niques.

1. INTRODUCTION

A common technique used to determine the attenuation constant

of a microstrip line is based on Q factor measurements made on

resonators which are capacitively coupled via a small gap JO a main

line. Several techniques have been described in the literature for

calculating the uuloaded Q of these resonators from measured input

reflection coefficient data [1 ]–[3]. These rely on graphical tech-

niques developed by Ginzton [4] for measurements made on reso-

nant cavities and are based on equivalent circuit models for the

resonator. While these give good results for the high Q’s ( >10 000)

typically realizable for cavity resonators, the approximations are

not always valid for the low Q’s (200 or less) typical of microstnp

resonators.

The usual expression for Q used in these techniques relates the

propagation constant /3, and the attenuation constant a, as follows

Q = fl/2LY (1)

where ~ = (0/c) ~f, co = 2x$, c is the speed of light, and Cefl is

the effective dielectric constant of the substrate. However, (1) does

not include the effect of dispersion. For a dispersive line eeff be-

comes a function of frequency and the proper expression for Q

becomes

(2)

where ~ = (u/c) -j. Therefore, the correct solution to the
problem of determining the Q of a possibly dispersive line requires

that measurements be made at several frequencies around the de-
sired operating frequency, on several resonators of appropriate
length, or some model must be included to account for dispersion
as a function of microstrip geometry and frequency.

Along with accounting for dispersion, the detuning effect of
fringing fields at the open end of the resonator must be included.

For an open circuit resonator, this may be modeled as a fringing
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capacitance, or equivalently as an increase in electrical length of

the resonator. The numerical value of the detuning capacitance may
be determined by measurements made on two resonators, one twice
the length of the other, or it can be found from curves availabk in
the published literature [5].

This paper presents a technique that allows the attenuation con-

stant to be found from a measured curve of Ir,n 12versus frequertcy.
Data averaging is incorporated and the effects of dispersion are
included. The method does not rely on an equivalent resonator
model. The salient features of this method are: 1) The Q and at-
tenuation constant are solved for from averaged measured values
for the input reflection coefficient for a given resonator. This is
possible since all the required information is contained in a plot of

11’,n12versus frequency. To reduce the effect of measurement error
on the data, a curve fitting technique is used to find the best qua-
dratic curve to fit the data poigts, that are chosen symmetric about

the measured minimum value of r,.. Since the measured minimum

may not be the actual minimum, the minimum is found from the
quadratic curve fit to the data. Once the actual minimum is found,

seven points (three above and three below) chosen symmetrically
around this minimum are chosen to calculate the attenuation con-
stant at resonance. A quadratic polynomial is sufficient to represent
the II’,n12curve near resonance for data points up to A 10 % from
the measured resonant frequency. 2) An analytic expression for
dispersion, developed by Getzinger [6] maybe used to describe the

variation in phase around the resonance point,

(3)

wherejP = ZC/8Th, G = 0.6 + 0.009ZC, e,fi is the zero frequency

effective dielectric constant, h is the substrate height in cm, and ~
and & are in units of GHz. (See Fig. 1).

A more accurate formula for the dispersion has been given by

Kobayashi [7], and could be used in place of (3) for greater accu-

racy.

For a half wavelength resonator at resonance, the phase shift for

I’,n is –27r radians. This fact, along with a dispersion model for B

allows one to calculate the phase shift due to the coupling network

for resonance, if some estimate is available on the fringing capac-

itance at the open end. At resonance, the total phase shift is given

by

–2nir = 19,,(f,) – 2(3(fr)l – 2ooc(fr) (4)

where 6,, (~) is the contribution due to the coupling network, 8.,(~)

is the contribution from the open end, 1 is the resonator length. For

a half wave length resonator, 1 = k8/2 and n = 1.

A small gap may be modeled as a capacitive pi network, there-

fore an analytic expression for 191,(~) may be employed near res-

onance [8]. This expression will be developed later. Calculating

f),, ( ~p) by (4) also serves to remove any phase error or offset intro-

duced by a poor choice of reference plane when making the nnea-

surement. The fringing capacitance was determined from published

data [5], and is a function of microstnp geometry.

This technique was implemented as a computer program and used

to analyze several sets of resonator data. The results are presented

at the end of this paper.
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Fig, 1. Dispersion characteristics ofeffectlve dielectric constant fora ml-
crostrip line.

II. THEORY

The attenuation constant for a given microstrip geometty at a
given frequency can be determined from measurements made on

capacitively coupled half wave resonators. From the measurements
of input reflection coefficient one can extract all the desired infor-

mation without resorting to the use of a lumped parameter equiv-
alent circuit for the resonator, as shown in Fig. 2. The coupling
network can be represented as a symmetrical capacitive pi network,

whose ~ parameters are given by

Y: + U2(2C, C2 + c;)
Sll = S22 = ~

Y, – @2(2c,c2 + c;) + 2jdc, + C2)YC

Pll = 1s111 (5)

Y: + &)~(2c, c2 + c;)—
– {[&@2(2c,c2+c ;)]2+4ti2(c1 + C2)2Y~)}1i2

(6)

2@(c, + C2) Yc
arg (Sll) = 011 = –tan–l

Y: – W2(2C1C2 + c;)
(7)

S12 = Szl = (1 – p~l)’jz expj(~ll * 7i-/2). (8)

It is not necessary to express the coupling network S parameters in
terms of the capacitances in the equivalent network. The formulas

developed later depend only on the requirement that the coupling
network is symmetrical and lossless, i.e. SI, = S~2.

To account for the fringing capacitance Cf at the open circuit

end, we can write

~oc= eXfI(‘J Zf)f) (9)

where

6’f= tan- 1 (OJCf/ YC). (lo)

The effect of the fringing capacitance is to increase the effective
electrical length of the line and is seen as a detuning effect. The
value of Cf is a function of the line width as well as substrate di-
electric constant and thickness. Numerical values for Cf may be
found in the literature, or Ofmay be measured using lines of differ-
ent physical lengths [5].

At the coupling network, rL for the resonator may be written as

r~ = roc exp (–2j131 – 2cd) = PL exp (–2J31 – 2JOf) (11)

where p~ = exp ( —2od ) and a is the attenuation constant. If radia-
tion is present 1170Cl< 1, and will result in a reduced value of PL,

which can not be separated from the PL due to attenuation in the
conductor and dielectric, unless measurements are made on lines

L2

I I

Fig. 2, Equivalent circuit for a gap coupled resonator.

of different lengths. If PL1 and p~z are found for two resonators of

length 11and 12respectively, then

1

()

In Q

a = 2(12 – 11) pL2 “

The input reflection coefficient r,n is given by

sf2r~
r,n = Sl, + _ Pll - PL,J+

1 – s,, rL – I – p,lpLeJ@
exp (jO1l)

where @ = 01~ – 2(31 – 2tlt From (12) we get

P!l + P; – 2PlloLcos@
P:. = lr,n12=

1 + p;,p~ – 2p,, pLcos@

and

tan (p – 0,1) =
PL(PII – 1) sin 4

Pll(l + P3 – PLO + P?l) Cos+

(12)

(13)

(14)

where arg (rlJ = p. The minimum value of pin occurs for ~ =
–2n~ and is given by

* _ (PI, – PL)2

‘m – (1 – ,o,, pL)2

and

(J,,, Pll
arg (r,n,J =

0,1 * T, Pll

> pL

< pL

(15)

(16)

From (15) it is seen that for critical coupling (pm = O), it is
required that p,, = pL. When p,, < pL the resonator is over cou-
pled, for PI, > PL it is under coupled.

For a given microstrip geometry, gap spacing, and frequency
range, the measured values corresponding to (12) are unique, and

so the required attenuation constant can be solved for using (12)
and (13).

For near critical coupling, (7) reduces to

e,, = –2@(c, + cJ/Yc = –2LIIZCCT (17)

where Z, = 1/Y= is the characteristic impedance of the line. The
angle 0,, (~,) can be determined at the measured resonant frequency
point of the resonator from

d = –’2~ = ~ll(fr) – X3(fi)l – Zof(fi) (18a)

which gives

19,,(J) = –27r + 2(fi)l + Zof($) (18b)

where f, is the resonant frequency of the coupled line. Of can be

determined from (10) using published data, and f31~ can be deter-
mined from (18). Note that j, # fO, the design resonant frequency,
so the difference between f. and f, represents the combined detun-
ing effects due to the coupling network, fringing, and dispersion.
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To solve (18), f?(~,) = (w/c) mmust be known. Ifnodis-

persion is present, eefi(~) = cef(0) and f?(~) is known. Fordis-

persivelinesj Getzinger’s expression forthedielectnc constant is
used for the examples considered in this paper.

For a half wave length resonator

A.
l= Ag/2=~—= c

2=
(19)

2fo =

wherefO istheresonant frecluency of the uncoupled line. Therefore,

(18a) at resonance can be written as

(20)

which may be used to solve for O,, ( f,), the phase shift due to the
coupling network at the resonance point.

Over a *5% frequency range near resonance, cos @in ( 13) may
be replaced by 1 – $2/2 where $ now represents the phase change

from –2n~. Let B = OIILJL,then (15) becomes (PI I – pL)2 = (1

– @2p ~ and (13) becomes

~:n = (1 – B)zp; + *2B

(1 - l?)’ + #J2B
(21)

at resonance. In (21) q5now represents the change in dl ~ – 261 –
20f away from – 2nr. We can write this as

4’ = @@/df) (f – J) or

[

40,, – 2of)

+=fr 1f-~

df –
2y, $;(fm) ~

r

Now

1 dq,~Jf)
-$ fm=.m+f —

2- df

and using (3) gives

($( fm)’a 1 ++=-%

‘eff(f) (1 + ‘)- )

where A = G( f/fP)2. Since Of = tan-1 (2rf -ZCC~)

d9f 27rzc Cj
— ,=
df 1 + (27rfzcCf)z‘

For a typical coupling network, ~1,(~) = –2@ CT so

Combining (23), (24), and (25) in (22) gives

~=_#f
x’

where 8

4rrzcf, Cf
s = Oll(,f,) – 1 + (27rfrzc Cf)l

[1_2T#%ff(f) “2

f. eeff (&)

( A er – eeff
“ l+——

)~eff(fr) (1 + A)2 “

(22)

(23)

(24)

(25)

(26a)

(26b)

The frequency sensitivity of the network is determined by the slope

parameter S, which includes dispersion effects. If we now let ~ =
SAf/J = S6 where 6 = Af/f,, (21) becomes

2 _ Pi + [S2~/(1 – B)2] ~z
“n – 1 + [S2B/(1 – B)~] 82

(27)

where as before, B = PI, pL. Since we have an expression for S,
(27) may be solved for B by assuming that over a small range of

frequencies, i.e., 8 < 0.1, .01,PL remains essentially constant, so
that two values of p ~“, saY p ~“1and p&2 may be chosen, giving two

equations for the unknowns, PMand B.

If o ~“,o ~. and W = SzB/(l – B)2 were known to great precision
near resonance, (27) could be solved accurately for pL. However,
since measured values of p ~nare subject to random errors and round

off by the measurement instrument, different sets of selected points
will give different values for p~. Since a 5 % to 10% error is pos-
sible as a result of an experimental set-up, a modified approach is
needed to smooth out the errors. Since a large number of data points

are available near resonance, curve fitting may be employed to ex-
trapolate p ~nvalues back to resonance to get a more accurate value

forp~.
Since only data points near resonance are used, the expression

for ~ in (22) or S in (26) offers a valid, linear approximation to the
phase change near resonance.

For measured pairs of values of p ~“, say p ~ and p ~ at & and 62,
we can solve for p ~ and W to give

w= P? – P;

(1 – p:)a; – (1 – p;)a2
(28)

If several pairs of points were used to calculate a number of val-

ues for p ~ and W, a least square polynomial fit can be used to
extrapolate back to f = f, to give a good estimate on W and p ~, at
f = f,.

Since S is known and 1?can be solved for, PL maybe determined
to be

pL = +(1 – B)pM/2 + [(1 – B)2pj/4 + B]l/2 (30)

where PM is the averaged value of p,,,. The upper sign is used when

pL > PI, and the lower sign when PL < pll. From PL, we get

1
cr=—-lnpL

21
(31)

If PL is close to 1, pL must be accurately known to avoid large errors
in a.

Although these equations were solved for several sets of data
points, only one calculation using the smoothed minimum value of
11’,”12(i.e., pfi), and one value above and below it is really nec-
essary. This is because the quadratic curve represents the “best
fit” to the seven data points chosen so the computed minimum value
is a weighted average which depends on six other points.

The technique of using a quadratic equation to represent ll~,n12
versus frequency is valid only for data points near the minimum

value of jI’,.lz, say within ~ 10 %. For points far from resonance,
the quadratic approximation is not an accurate representation of the
Ir \~ncurve. Smoothing the data by means of a least squares fit to

the measured p & versus frequency data allows us to use the above
equations to obtain an accurate value for a.

III. FTUMERICAL RESULTS AND CONCLUSIONS

A program written to implement this technique was used to ana-
lyze several sets of resonator data. The resonators were constructed
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TABLE I

Design Resonant Actual Resonant
Resonator Frequency (GHz) Frequency (GHz) Q P,

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

20.0
20.0
16.0
12.0
20.0
20,0
16.0
20.0

8.0
16.0
20.0

Resonators

18.920
19.194
15.41
11.505
18.885
19.173
15.342

13.457
16.406

82
149
182
201

77
128
117
57

131
19
13

Shielded Lines
(1) #5S 10mil Duroid (6) #5 L1Omil Duroid
(2) #5 L1Omil Duroid (7) #4S 10mil CuflOn
(3) #4S 10mil CuFlon (8) #5L31 mil CuFlon
(4) #3S 10mil CuFlon (9) #2S31 mdCuFlon

(short shield) (10) #4S31 mil CuFlon*
Unshielded Lines (11) #5 Smil Cuflon*

(5) #5S 10mil Duroid

*Low Q caused by poor metallizatlon in the fabrication process

.9641

.9667

.9850

.9850

.9619

.9613

.9745

.9195

.9773

.8641

.8144

on Duroid (c, = 2.17) and CuFlon (c, = 2.1) substrates of thick-

ness of 10 or 31 roils. The characteristic impedances of all lines

was 50 Q. Table I shows the results obtained for shielded and un-

shielded resonators, along with the design resonant frequency and

calculated Q. ‘The resonators were manufactured by ametalization

process and the variation unmeasured Q for similar resonators is

believed to bedueto the quality of themetalization. The design

and construction of the resonators was carried out at the NASA

Lewis Research Center [lO] as were the measurements.

The calculated Q’s listed in this table are in good agreement with
estimated Q’s determined from the bandwidth of the I?71nIz curve at
the 6 dB return loss points.

The approach presented here offers several advantages over other
techniques commonly used to determine the Q of a microstrip
resonator. They are:

1) PL and Q are determined fom the fitted Ir,n Iz curve directly.
2) Using seven measured data points allows more of the avail-

able information to be used to determine the Q.
3) Curve fitting of the data reduces measurement induced error,
4) A dispersion model is introduced so that the effects of dis-

persion are included.
5) An accurately established reference plane is not required in

making the measurements.
6) No detailed model of the coupling gap is needed. This ap-

proach is suitable for analyzing resonators using asymmetric cou-
pling gaps, where SI ~ # S22, with only slight modification.
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Conformal Mapping Analyses of Microstrips with
Circular and Elliptical Cross-Sections

M. A. Martens, R. W. Brown, and E. M. Haacke

Afsstract-A new conformal transformation is derived in terms of a
Schwarz-Christoffel transformation involving elliptic integrals of the
first and third kind. This mapping function is used to give exact solss-
tions for TEM excitations of microstrips and coupled microstrips with
circular and elliptical cross-sections. Using these maps, the uniformity
of the TEM mode magnetic field inside an elliptical slotted tribe trans-
mission line is investigated.

I. INTRODUCTION

Due to the interest in nonplanar microstnplines with circular and

elliptical cross-sections [1]–[7] it is certainly useful if one can find

an analytic solution for the fields produced in these geometries.
Some of the methods suggested in the literature involve either in-
finite series [1], [3], [7] or iterations [5]. In contrast to these meth-
ods, the confomtal mapping technique, if successful, provides an
exact closed-form solution. Although conformal mapping has been
applied to this class of problems [2], [4], [6], the geometries are
mapped into a finite region of a domain where the conductors are

planar and then one or more of the transverse dimensions of the
conductors are assumed to extend to infinity.

It is the purpose of this paper to present a complete set of con-
formal transformations that are used to analyze the TEM modes of
the circular and elhptical geometries shown m Fig. 1. No assump-
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