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Short Papers

Data Reduction Method for Q Measurements of
Strip-Line Resonators

S. Toncich and R. E. Collin

Abstract—This paper describes a technigue that enables the atten-
uation constant ¢ of a microstrip line to be found from the measured
return loss curve as a function of frequency for a half wavelength
resonator. Data averaging is incorporated and the effects of dispersion
are included. This method does not require the use of an equivalent
resonator model for the stripline, nor does it rely on graphical tech-
niques.

I. INTRODUCTION

A common technique used to determine the attenuation constant
of a microstrip line is based on Q factor measurements made on
resonators which are capacitively coupled via a small gap to a main
line. Several techniques have been described in the literature for
calculating the unloaded Q of these resonators from measured input
reflection coefficient data [1]-[3]. These rely on graphical tech-
niques developed by Ginzton {4] for measurements made on reso-
nant cavities and are based on equivalent circuit models for the
resonator. While these give good results for the high Q’s (> 10 000)
typically realizable for cavity resonators, the approximations are
not always valid for the low Q’s (200 or less) typical of microstrip
resonators.

The usual expression for Q used in these techniques relates the
propagation constant 3, and the attenuation constant o, as follows

0 =8/2x )

where B = (0/c) Ve, @ = 2xf, c is the speed of light, and e.g is
the effective dielectric constant of the substrate. However, (1) does
not include the effect of dispersion. For a dispersive line e.q be-
comes a function of frequency and the proper expression for Q
becomes

== @

where 8 = (0/¢) Ve (f). Therefore, the correct solution to the
problem of determining the Q of a possibly dispersive line requires
that measurements be made at several frequencies around the de-
sired operating frequency, on several resonators of appropriate
length, or some model must be included to account for dispersion
as a function of microstrip geometry and frequency.

Along with accounting for dispersion, the detuning effect of
fringing fields at the open end of the resonator must be included.
For an open circuit resonator, this may be modeled as a fringing
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capacitance, or equivalently as an increase in electrical length of
the resonator. The numerical value of the detuning capacitance may
be determined by measurements made on two resonators, one twice
the length of the other, or it can be found from curves available in
the published literature [5].

This paper presents a technique that allows the attenvation con-
stant to be found from a measured curve of |T',,|? versus frequency.
Data averaging is incorporated and the effects of dispersion are
included. The method does not rely on an equivalent resonator
model. The salient features of this method are: 1) The Q and at-
tenuation constant are solved for from averaged measured values
for the input reflection coeflicient for a given resonator. This is
possible since all the required information is contained in a plot of
]I‘ml2 versus frequency. To reduce the effect of measurement error
on the data, a curve fitting technique is used to find the best qua-
dratic curve to fit the data points, that are chosen symmetric about
the measured minimum value of T',,. Since the measured minimum
may not be the actual minimum, the minimum is found from the
quadratic curve fit to the data. Once the actual minimum is found,
seven points (three above and three below) chosen symmetrically
around this minimum are chosen to calculate the attenuation con-
stant at resonance. A quadratic polynomial is sufficient to represent
the |T',,|* curve near resonance for data points up to +10% from
the measured resonant frequency. 2) An analytic expression for
dispersion, developed by Getzinger [6] may be used to describe the
variation in phase around the resonance point,

€r T Eeff 3)

1+ G2

where f, = Z./87h, G = 0.6 + 0.009Z,, ¢ is the zero frequency
effective diclectric constant, 4 is the substrate height in cm, and f
and f, are in units of GHz. (See Fig. 1).

A more accurate formula for the dispersion has been given by
Kobayashi [7], and could be used in place of (3) for greater accu-
racy.

For a half wavelength resonator at resonance, the phase shift for
I',, is —27 radians. This fact, along with a dispersion model for 8
allows one to calculate the phase shift due to the coupling network
for resonance, if some estimate is available on the fringing capac-
itance at the open end. At resonance, the total phase shift is given
by

6eff(f) = €&

—2nm = 0u(f) — 26(f)1 — 20,.(f) )

where 8,,( f) is the contribution due to the coupling network, 8,.(f)
is the contribution from the open end, [ is the resonator length. For
a half wave length resonator, I = \,/2 andn = 1.

A small gap may be modeled as a capacitive pi network, there-
fore an analytic expression for 6;,(f) may be employed near res-
onance [8]. This expression will be developed later. Calculating
0:.(f,) by (4) also serves to remove any phase error or offset intro-
duced by a poor choice of reference plane when making the mea-
surement. The fringing capacitance wag determined from published
data [5], and is a function of microstrip geometry.

This technique was implemented as a computer program and used
to analyze several sets of resonator data. The results are presented
at the end of this paper.
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Fig. 1. Dispersion characteristics of effective dielectric constant for a mi-
crostrip line.

II. THEORY

The attenuation constant for a given microstrip geometry at a
given frequency can be determined from measurements made on
capacitivly coupled half wave resonators. From the measurements
of input reflection coefficient one can extract all the desired infor-
mation without resorting to the use of a lumped parameter equiv-
alent circuit for the resonator, as shown in Fig. 2. The coupling
network can be represented as a symmetrical capacitive pi network,
whose § parameters are given by

Y2 + w2C,C, + CH
Y2 — 0*Q2C,C, + C + 2jw(C; + C)Y,

S =8, =

P11 = ‘S11| )

B Y2 + 0?2C,C, + CH
C{IY? - W2QCIC + CHP? + 4w?(Cy + CPYHY/?

©

_ 20(C) + )Y,

Si) =60 = —tan”! :
arg (S11) 11 an Y% — w2(2C1C2 n C%) @)
Sp=Sy =1 — o} expjd, + 7/2). (8)

It is not necessary to express the coupling network § parameters in
terms of the capacitances in the equivalent network. The formulas
developed later depend only on the requirement that the coupling
network is symmetrical and lossless, i.e. S;; = Sa,.

To account for the fringing capacitance C; at the open circuit
end, we can write

T, = exp (7205 €))
where

8; = tan”" (wCy/Y,). (10)

The effect of the fringing capacitance is to increase the effective
electrical length of the line and is seen as a detuning effect. The
value of C;is a function of the line width as well as substrate di-
electric constant and thickness. Numerical values for C; may be
found in the literature, or 6, may be measured using lines of differ-
ent physical lengths [5].

At the coupling network, I'; for the resonator may be written as

[ =Ty exp (=28l = 2ad) = py exp (=28 — 2j6) (11)

where p; = exp (—2«/) and « is the attenuation constant. If radia-
tion is present |I',.| < 1, and will result in a reduced value of p;,
which can not be separated from the p; due to attenuation in the
conductor and dielectric, unless measurements are made on lines
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Fig. 2. Equivalent circuit for a gap coupled resonator.

of different lengths. If p;, and p;, are found for two resonators of
length /, and [, respectively, then

o = L In <Bﬂ>
2, = 1) Pr2

The input reflection coefficient I'  is given by

S%ZI‘L Pt — PL‘?”S
r, =S8, + = 6 12
in 11 1= S,T;, 1-—pype® exp (jb) (12)
where ¢ = 6;; — 28] — 20,. From (12) we get
2 el
s u+ei — 2
ol = T, = 1l 2,0L2 01101 COS ¢ a13)
1+ phip7 — 20110 CO8 &
and
2 — 1) sin
tan (¢ — 6,)) = prlpi ) ¢ (14)

pu(l + Pi) —p (1 + P%l) cos ¢

where arg (I',,) = ¢. The minimum value of p,, occurs for ¢ =
—2n7 and is given by

2 _ (P11 — PL)2

m = ) (15
(L = ooy )
and
, >p
arg M) = e (16)
0 = m oy < oL

From (15) it is seen that for critical coupling (p,, = 0), it is
required that p;; = p;,. When p,; < p, the resonator is over cou-
pled, for p;; > p; it is under coupled.

For a given microstrip geometry, gap spacing, and frequency
range, the measured values corresponding to (12) are unique, and
so the required attenuation constant can be solved for using (12)
and (13).

For near critical coupling, (7) reduces to

011 = —2w(C1 + C2)/YL = _ZCOZCCT (17)

where Z, = 1/Y, is the characteristic impedance of the line. The
angle 6,;( f,) can be determined at the measured resonant frequency
point of the resonator from

o = =27 = 0(f) — 2B(/)1 = 20,(f)

which gives

(18a)

On(f) = =2m + 2(f)1 + 20,(f) (18b)

where f, is the resonant frequency of the coupled line. ; can be
determined from (10) using published data, and 6, can be deter-
mined from (18). Note that f, # f,, the design resonant frequency,
so the difference between f, and f, represents the combined detun-
ing effects due to the coupling network, fringing, and dispersion.
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To solve (18), B(f,) = (w/¢) Veu( f) must be known. If no dis-
persion is present, €.q(f) = e.x(0) and B(f) is known. For dis-
persive lines, Getzinger’s expression for the dielectric constant is
used for the examples considered in this paper.

For a half wave length resonator

1N c
2Vew(f) 2 Vew(f)

where f, is the resonant frequency of the uncoupled line. Therefore,
(18a) at resonance can be written as

ﬁ €eff ( f;‘)

¢ = =2nm = 0y(f) — 2”]?0 lifeff(fo)

I=2/2= (19)

1/2
} —-2tan"' 2nf,Z,.Cp)

20)

which may be used to solve for 8;,(f,), the phase shift due to the
coupling network at the resonance point.

Overa +5% frequency range near reasonance, cos ¢ in (13) may
be replaced by 1 — ¢2 /2 where ¢ now represents the phase change
from —2nm. Let B = p,,p1, then (15) becomes (py; — o) = (1
— B)*p2, and (13) becomes

, (1L — B2 + ¢°B

Pin = (1 _ B)Z + ¢>2B (21)
at resonance. In (21) ¢ now represents the change in 6,, — 28 —
20,away from —2nm. We can write this as

¢ = d¢/df)(f— f) or
[, d0y — 260 2r d }f—fr
¢ = l:fr af - 2lf, - df(f\lﬁeff(f)) —_fr (22)
Now
d 1 deeff(f)
4 o) = e ) + f—mes
df(f €t (f €est( f) fsz—) df
and using (3) gives
d A & T Eeir
EJfJ%MfD-J%Mf)<1+;;a§af:z?> 3)
where A = G(f/f,)". Since 0; = tan™' (27fZ,C)
ab; 272, G
—_ (24)
a 1+ QafZ.Cp ‘
For a typical coupling network, 8,,(f) = —2wZ.Crso
by _ _
e 47Z.Cr. (25)
Combining (23), (24), and (25) in (22) gives
Af
= —-§—= 26
¢ 7 (26a)
where ,
47Z.1,C
. _ P&l
§=0u(f) — 1% nf,z,Cp?
3 ji\ieeff(f)}lﬂ
rfo €ete (So)
A € — Eefr
). 26b
( emunl+m9 @6b)
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The frequency sensitivity of the network is determined by the slope
parameter S, which includes dispersion effects. If we now let ¢ =
SAf/f, = 86 where 6 = Af/f., (21) becomes

2 _pm t IS’B/(1 = B16°
Pm = 1Y IS™B/( - B 62

@7

where as before, B = py;p;. Since we have an expression for S,
(27) may be solved for B by assuming that over a small range of
frequencies, i.e., 6 < 0.1, p;; p; remains essentially constant, so
that two values of p2, say p2, and p%, may be chosen, giving two
equations for the unknowns, p,, and B.

Ifp2, p%.and W = §°B /(1 — B)* were known to great precision
near resonance, (27) could be solved accurately for p;. However,
since measured values of p2 are subject to random errors and round
off by the measurement instrument, different sets of selected points
will give different values for p;. Since a 5% to 10% error is pos-
sible as a result of an experimental set-up, a modified approach is
needed to smooth out the errors. Since a large number of data points
are available near resonance, curve fitting may be employed to ex-
trapolate p2, values back to resonance to get a more accurate value
for p2,

Since only data points near resonance are used, the expression
for ¢ in (22) or § in (26) offers a valid, linear approximation to the
phase change near resonance.

For measured pairs of values of p,z,,, say p?and p3 at &, and &5,
we can solve for p2, and W to give

2 2

PL— P2
W= 28
T =phsi—a-pho° @)
» _ P3l = p1) 81 — pi(l = p3) 83 29)

SIS HEN P
If several pairs of points were used to calculate a number of val-
ues for p2 and W, a least square polynomial fit can be used to
extrapolate back to f = f, to give a good estimate on W and p?, at
f=/
Since S is known and B can be solved for, p; may be determined
to be

pr= +(1 — Bpy/2 + [(1 — Boy/4 + BI'*  (30)

where p,, is the averaged value of p,,. The upper sign is used when
o1 > py; and the lower sign when p; < p;;. From p;, we get

a=-——Inp, (31)

21
If p, is close to 1, p; must be accurately known to avoid large errors
in o.

Although these equations were solved for several sets of data
points, only one calculation using the smoothed minimum value of
IT..)? (i.e., 037), and one value above and below it is really nec-
essary. This is because the quadratic curve represents the *‘best
fit>’ to the seven data points chosen so the computed minimum value
is a weighted average which depends on six other points.

The technique of using a quadratic equation to represent |I',|*
versus frequency is valid only for data points near the minimum
value of |T',|*, say within +10%. For points far from resonance,
the quadratic approximation is not an accurate representation of the
[T'|2 curve. Smoothing the data by means of a least squares fit to
the measured p2, versus frequency data allows us to use the above
equations to obtain an accurate value for o.

II. NuMERICAL RESULTS AND CONCLUSIONS

A program written to implement this technique was used to ana-
lyze several sets of resonator data. The resonators were constructed
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TABLE 1
Design Resonant Actual Resonant
Resonator Frequency (GHz) Frequency (GHz) 0 P,
(H 20.0 18.920 82 .9641
2) 20.0 19.194 149 .9667
3) 16.0 15.41 182 .9850
4) 12.0 11.505 201 19850
()] 20.0 18.885 77 9619
6) 20.0 19.173 128 9613
) 16.0 15.342 117 9745
®8) 20.0 17.897 57 .9195
(C)] 8.0 7.522 131 9773
(10) 16.0 13.457 19 .8641
an 20.0 16.406 13 .8144
Resonators
Shielded Lines

(1) #5S 10 mil Duroid
(2) #5L 10 mil Duroid
(3) #4S 10 mil CuFlon
(4) #3S 10 mil CuFlon
(short shield)
Unshielded Lines
(5) #58 10 mil Duroid

(6) #5L 10 mil Duroid
(7) #4S 10 mil Cuflon
(8) #5L 31 mil CuFlon
(9) #28 31 mil CuFlon
(10) #4S 31 mil CuFlon*
(11) #58 mil Cuflon*

*Low Q caused by poor metallization in the fabrication process.

on Duroid (¢, = 2.17) and CuFlon (¢, = 2.1) substrates of thick-
ness of 10 or 31 mils. The characteristic impedances of all lines
was 50 Q. Table I shows the results obtained for shielded and un-
shielded resonators. along with the design resonant frequency and
calculated Q. The resonators were manufactured by a metalization
process and the variation in measured @ for similar resonators is
believed to be due to the quality of the metalization. The design
and construction of the resonators was carried out at the NASA
Lewis Research Center [10] as were the measurements.

The calculated Q’s listed in this table are in good agreement with
estimated Qs determined from the bandwidth of the |T',|? curve at
the 6 dB return loss points.

The approach presented here offers several advantages over other
techniques commonly used to determine the @ of a microstrip
resonator. They are:

1) p. and Q are determined fom the fitted |T,,|? curve directly.

2) Using seven measured data points allows more of the avail-
able information to be used to determine the Q.

3) Curve fitting of the data reduces measurement induced error.

4) A dispersion model is introduced so that the effects of dis-
persion are included.

5) An accurately established reference plane is not required in
making the measurements.

6) No detailed model of the coupling gap is needed. This ap-
proach is suitable for analyzing resonators using asymmetric cou-
pling gaps, where S;; # S, with only slight modification.
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Conformal Mapping Analyses of Microstrips with
Circular and Elliptical Cross-Sections

M. A. Martens, R. W. Brown, and E. M. Haacke

Abstract—A new conformal transformation is derived in terms of a
Schwarz-Christoffel transformation involving elliptic integrals of the
first and third kind. This mapping function is used to give exact solu-
tions for TEM excitations of microstrips and coupled microstrips with
circular and elliptical cross-sections. Using these maps, the uniformity
of the TEM mode magnetic field inside an elliptical slotted tube trans-
mission line is investigated.

[. INTRODUCTION

Due to the interest in nonplanar microstriplines with circular and
elliptical cross-sections [1]-[7] it is certainly useful if one can find
an analytic solution for the fields produced in these geometries.
Some of the methods suggested in the literature involve either in-
finite series [1], [3]. [7] or iterations [5]. In contrast to these meth-
ods, the conformal mapping technique, if successful, provides an
exact closed-form solution. Although conformal mapping has been
applied to this class of problems [2], [4]. [6], the geometries are
mapped into a finite region of a domain where the conductors are
planar and then one or more of the transverse dimensions of the
conductors are assumed to extend to infinity.

It is the purpose of this paper to present a complete set of con-
formal transformations that are used to analyze the TEM modes of
the circular and elliptical geometries shown 1n Fig. 1. No assump-
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